193 research outputs found

    Effects of the administration of 25(OH) vitamin D3 in an experimental model of chronic kidney disease in animals null for 1- Alpha-hydroxylase

    Get PDF
    The final step in vitamin D activation is catalyzed by 1-alpha-hydroxylase (CYP27B1). Chronic kidney disease (CKD) is characterized by low levels of both 25(OH)D3 and 1,25 (OH)2D3 provoking secondary hyperparathyroidism (2HPT). Therefore, treatments with active or native vitamin D compounds are common in CKD to restore 25(OH)D3 levels and also to decrease PTH. This study evaluates the dose of 25(OH)D3 that restores parathyroid hormone (PTH) and calcium levels in a model of CKD in CYP27B1-/- mice. Furthermore, we compare the safety and efficacy of the same dose in CYP27B1+/+ animals. The dose needed to decrease PTH levels in CYP27B1-/- mice with CKD was 50 ng/g. That dose restored blood calcium levels without modifying phosphate levels, and increased the expression of genes responsible for calcium absorption (TRPV5 and calbindinD- 28K in the kidney, TRPV6 and calbindinD-9k in the intestine). The same dose of 25(OH)D3 did not modify PTH in CYP27B1+/+ animals with CKD. Blood calcium remained normal, while phosphate increased significantly. Blood levels of 25(OH)D3 in CYP27B1-/- mice were extremely high compared to those in CYP27B1+/+ animals. CYP27B1+/+ animals with CKD showed increases in TRPV5, TRPV6, calbindinD-28K and calbindinD-9K, which were not further elevated with the treatment. Furthermore, CYP27B1+/+ animals displayed an increase in vascular calcification. We conclude that the dose of 25(OH)D3 effective in decreasing PTH levels in CYP27B1-/- mice with CKD, has a potentially toxic effect in CYP27B1+/+ animals with CKD.This work was supported by the Instituto de Salud Carlos III PS12/01770, RD12/0021/0026

    An Efficient Paradigm for Genetic Epidemiology Cohort Creation

    Get PDF
    Development of novel methodologies to efficiently create large genetic epidemiology cohorts is needed. Here we describe a rapid, precise and cost-efficient method for collection of DNA from cases previously experiencing an osteoporotic fracture by identifying cases using and administrative health-care databases. Over the course of 14 months we collected DNA from 1,130 women experiencing an osteoporotic fracture, at a cost of $54 per sample. This cohort is among the larger DNA osteoporotic fracture collections in the world. The novel method described addresses a major unmet health care research need and is widely applicable to any disease that can be identified accurately through administrative data

    The Abnormal Phenotypes of Cartilage and Bone in Calcium-Sensing Receptor Deficient Mice Are Dependent on the Actions of Calcium, Phosphorus, and PTH

    Get PDF
    Patients with neonatal severe hyperparathyroidism (NSHPT) are homozygous for the calcium-sensing receptor (CaR) mutation and have very high circulating PTH, abundant parathyroid hyperplasia, and severe life-threatening hypercalcemia. Mice with homozygous deletion of CaR mimic the syndrome of NSHPT. To determine effects of CaR deficiency on skeletal development and interactions between CaR and 1,25(OH)2D3 or PTH on calcium and skeletal homeostasis, we compared the skeletal phenotypes of homozygous CaR–deficient (CaR−/−) mice to those of double homozygous CaR– and 1α(OH)ase–deficient [CaR−/−1α(OH)ase−/−] mice or those of double homozygous CaR– and PTH–deficient [CaR−/−PTH−/−] mice at 2 weeks of age. Compared to wild-type littermates, CaR−/− mice had hypercalcemia, hypophosphatemia, hyperparathyroidism, and severe skeletal growth retardation. Chondrocyte proliferation and PTHrP expression in growth plates were reduced significantly, whereas trabecular volume, osteoblast number, osteocalcin-positive areas, expression of the ALP, type I collagen, osteocalcin genes, and serum ALP levels were increased significantly. Deletion of 1α(OH)ase in CaR−/− mice resulted in a longer lifespan, normocalcemia, lower serum phosphorus, greater elevation in PTH, slight improvement in skeletal growth with increased chondrocyte proliferation and PTHrP expression, and further increases in indices of osteoblastic bone formation. Deletion of PTH in CaR−/− mice resulted in rescue of early lethality, normocalcemia, increased serum phosphorus, undetectable serum PTH, normalization in skeletal growth with normal chondrocyte proliferation and enhanced PTHrP expression, and dramatic decreases in indices of osteoblastic bone formation. Our results indicate that reductions in hypercalcemia play a critical role in preventing the early lethality of CaR−/− mice and that defects in endochondral bone formation in CaR−/− mice result from effects of the marked elevation in serum calcium concentration and the decreases in serum phosphorus concentration and skeletal PTHrP levels, whereas the increased osteoblastic bone formation results from direct effects of PTH

    Screening for Multiple Endocrine Neoplasia Type 2A with DNA-Polymorphism Analysis

    Get PDF
    Nine chromosome 10 DNA markers (FNRB, D10S34, D10Z1, MEN203, D10S94, RBP3, D10S15, MBP [48.11], D10S22) were typed in two large Canadian pedigrees with multiple endocrine neoplasia type 2A (MEN 2A). These markers and the gene for MEN 2A (MEN2A) are believed to be in one linkage group spanning approximately 15 cM (male). MEN203 and D10S94 were informative and tightly linked to MEN2A with no recombinants observed in 26 meiotic events. D10S15 (MCK2), widely used in DNA genotyping predictions, demonstrated two recombinants in these two families. The use of multiple flanking markers increases both the likelihood of informativeness and the accuracy of risk assessments for predictive testing. We were able to assign a risk estimate for all 10 at-risk individuals

    The Causal Effect of Vitamin D Binding Protein (DBP) Levels on Calcemic and Cardiometabolic Diseases: A Mendelian Randomization Study

    Get PDF
    Background: Observational studies have shown that vitamin D binding protein (DBP) levels, a key determinant of 25-hydroxy- vitamin D (25OHD) levels, and 25OHD levels themselves both associate with risk of disease. If 25OHD levels have a causal influence on disease, and DBP lies in this causal pathway, then DBP levels should likewise be causally associated with disease. We undertook a Mendelian randomization study to determine whether DBP levels have causal effects on common calcemic and cardiometabolic disease. Methods and Findings: We measured DBP and 25OHD levels in 2,254 individuals, followed for up to 10 y, in the Canadian Multicentre Osteoporosis Study (CaMos). Using the single nucleotide polymorphism rs2282679 as an instrumental variable, we applied Mendelian randomization methods to determine the causal effect of DBP on calcemic (osteoporosis and hyperparathyroidism) and cardiometabolic diseases (hypertension, type 2 diabetes, coronary artery disease, and stroke) and related traits, first in CaMos and then in large-scale genome-wide association study consortia. The effect allele was associated with an age-and sex-adjusted decrease in DBP level of 27.4 mg/l (95% CI 24.7, 30.0; n=2,254). DBP had a strong observational and causal association with 25OHD levels (p=3.2x10(-19)). While DBP levels were observationally associated with calcium and body mass index (BMI),these associations were not supported by causal analyses. Despite well-powered sample sizes from consortia, there were no associations of rs2282679 with any other traits and diseases: fasting glucose (0.00 mmol/l [95% CI -0.01, 0.01]; p=1.00; n=46,186); fasting insulin (0.01 pmol/l [95% CI -0.00, 0.01,] ;p=0.22; n=46,186); BMI (0.00 kg/m(2) [95% CI -0.01, 0.01]; p=0.80; n=127,587); bone mineral density (0.01 g/cm(2) [95% CI -0.01, 0.03]; p=0.36; n=32,961); mean arterial pressure (-0.06 mm Hg [95% CI -0.19, 0.07]); p=0.36; n=28,775); ischemic stroke (odds ratio [OR] = 1.00 [95% CI 0.97, 1.04]; p=0.92; n=12, 389/62, 004 cases/controls); coronary artery disease (OR = 1.02 [95% CI 0.99, 1.05]; p=0.31; n=2,233/64, 762); or type 2 diabetes (OR = 1.01 [95% CI 0.97, 1.05]; p=0.76; n=9, 580/53, 810). Conclusions: DBP has no demonstrable causal effect on any of the diseases or traits investigated here, except 25OHD levels. It remains to be determined whether 25OHD has a causal effect on these outcomes independent of DBP

    A Risk Assessment Tool for Predicting Fragility Fractures and Mortality in the Elderly

    Get PDF
    Existing fracture risk assessment tools are not designed to predict fracture-associated consequences, possibly contributing to the current undermanagement of fragility fractures worldwide. We aimed to develop a risk assessment tool for predicting the conceptual risk of fragility fractures and its consequences. The study involved 8965 people aged >= 60 years from the Dubbo Osteoporosis Epidemiology Study and the Canadian Multicentre Osteoporosis Study. Incident fracture was identified from X-ray reports and questionnaires, and death was ascertained though contact with a family member or obituary review. We used a multistate model to quantify the effects of the predictors on the transition risks to an initial and subsequent incident fracture and mortality, accounting for their complex interrelationships, confounding effects, and death as a competing risk. There were 2364 initial fractures, 755 subsequent fractures, and 3300 deaths during a median follow-up of 13 years (interquartile range [IQR] 7-15). The prediction model included sex, age, bone mineral density, history of falls within 12 previous months, prior fracture after the age of 50 years, cardiovascular diseases, diabetes mellitus, chronic pulmonary diseases, hypertension, and cancer. The model accurately predicted fragility fractures up to 11 years of follow-up and post-fracture mortality up to 9 years, ranging from 7 years after hip fractures to 15 years after non-hip fractures. For example, a 70-year-old woman with aT-score of -1.5 and without other risk factors would have 10% chance of sustaining a fracture and an 8% risk of dying in 5 years. However, after an initial fracture, her risk of sustaining another fracture or dying doubles to 33%, ranging from 26% after a distal to 42% post hip fracture. A robust statistical technique was used to develop a prediction model for individualization of progression to fracture and its consequences, facilitating informed decision making about risk and thus treatment for individuals with different risk profiles. (c) 2020 American Society for Bone and Mineral Research

    Meta-analysis of genome-wide studies identifies MEF2C SNPs associated with bone mineral density at forearm

    Get PDF
    Background: Forearm fractures affect 1.7 million individuals worldwide each year and most occur earlier in life than hip fractures. While the heritability of forearm bone mineral density (BMD) and fracture is high, their genetic determinants are largely unknown. Aim: To identify genetic variants associated with forearm BMD and forearm fractures. Methods: BMD at distal radius, measured by dualenergy x-ray absorptiometry, was tested for association with common genetic variants. We conducted a metaanalysis of genome-wide association studies for BMD in 5866 subjects of European descent and then selected the variants for replication in 715 Mexican American samples. Gene-based association was carried out to supplement the single-nucleotide polymorphism (SNP) association test. We then tested the BMD-associated SNPs for association with forearm fracture in 2023 cases and 3740 controls. Results: We found that five SNPs in the introns of MEF2C were associated with forearm BMD at a genome-wide significance level (

    Endogenous PTH Deficiency Impairs Fracture Healing and Impedes the Fracture-Healing Efficacy of Exogenous PTH(1-34)

    Get PDF
    Although the capacity of exogenous PTH1-34 to enhance the rate of bone repair is well established in animal models, our understanding of the mechanism(s) whereby PTH induces an anabolic response during skeletal repair remains limited. Furthermore it is unknown whether endogenous PTH is required for fracture healing and how the absence of endogenous PTH would influence the fracture-healing capacity of exogenous PTH.Closed mid-diaphyseal femur fractures were created and stabilized with an intramedullary pin in 8-week-old wild-type and Pth null (Pth(-/-)) mice. Mice received daily injections of vehicle or of PTH1-34 (80 µg/kg) for 1-4 weeks post-fracture, and callus tissue properties were analyzed at 1, 2 and 4 weeks post-fracture. Cartilaginous callus areas were reduced at 1 week post-fracture, but were increased at 2 weeks post-fracture in vehicle-treated and PTH-treated Pth(-/-) mice compared to vehicle-treated and PTH-treated wild-type mice respectively. The mineralized callus areas, bony callus areas, osteoblast number and activity, osteoclast number and surface in callus tissues were all reduced in vehicle-treated and PTH-treated Pth(-/-) mice compared to vehicle-treated and PTH-treated wild-type mice, but were increased in PTH-treated wild-type and Pth(-/-) mice compared to vehicle-treated wild-type and Pth(-/-) mice.Absence of endogenous PTH1-84 impedes bone fracture healing. Exogenous PTH1-34 can act in the absence of endogenous PTH but callus formation, including accelerated endochondral bone formation and callus remodeling as well as mechanical strength of the bone are greater when endogenous PTH is present. Results of this study suggest a complementary role for endogenous PTH1-84 and exogenous PTH1-34 in accelerating fracture healing

    Osteoporosis-related fracture case definitions for population-based administrative data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Population-based administrative data have been used to study osteoporosis-related fracture risk factors and outcomes, but there has been limited research about the validity of these data for ascertaining fracture cases. The objectives of this study were to: (a) compare fracture incidence estimates from administrative data with estimates from population-based clinically-validated data, and (b) test for differences in incidence estimates from multiple administrative data case definitions.</p> <p>Methods</p> <p>Thirty-five case definitions for incident fractures of the hip, wrist, humerus, and clinical vertebrae were constructed using diagnosis codes in hospital data and diagnosis and service codes in physician billing data from Manitoba, Canada. Clinically-validated fractures were identified from the Canadian Multicentre Osteoporosis Study (CaMos). Generalized linear models were used to test for differences in incidence estimates.</p> <p>Results</p> <p>For hip fracture, sex-specific differences were observed in the magnitude of under- and over-ascertainment of administrative data case definitions when compared with CaMos data. The length of the fracture-free period to ascertain incident cases had a variable effect on over-ascertainment across fracture sites, as did the use of imaging, fixation, or repair service codes. Case definitions based on hospital data resulted in under-ascertainment of incident clinical vertebral fractures. There were no significant differences in trend estimates for wrist, humerus, and clinical vertebral case definitions.</p> <p>Conclusions</p> <p>The validity of administrative data for estimating fracture incidence depends on the site and features of the case definition.</p
    • …
    corecore